请升级浏览器版本

你正在使用旧版本浏览器。请升级浏览器以获得更好的体验。

学术报告

首页 >> 学术报告 >> 正文

【学术报告及分析与偏微分方程讨论班(2022秋季第​7讲)】Orthonormal Strichartz inequalities for the $(k, a)$-generalized Laguerre operator and Dunkl operator

发布日期:2022-10-24    点击:

数学学院学术报告

--- 分析与偏微分方程讨论班(2022秋季第7)

 


题目: Orthonormal Strichartz inequalities for the  $(k, a)$-generalized Laguerre operator and Dunkl operator


报告人: 宋曼利 副教授 (西北工业大学)


时间:2022-10-28  1500-1600  (周五下午)  


地点: #腾讯会议:442-813-061点击链接入会,或添加至会议列表:

https://meeting.tencent.com/dm/jVpj5dv3DcyF


摘要: Let $\Delta_{k,a}$ and $\Delta_k $ be the $(k,a)$-generalized Laguerre operator and the Dunkl Laplacian operator on $\mathbb{R}^n$, respectively. The aim of this article is twofold. First, we prove a restriction theorem for the Fourier-$\Delta_{k,a}$ transform. Next, as an application of the restriction problem, we establish Strichartz estimates for orthonormal families of initial data for the Schr\"odinger propagator $e^{-i t \Delta_{k, a}} $ associated with the operator $\Delta_{k, a}$.   Further, using the classical Strichartz estimates for the free Schr\"odinger propagator $e^{-i t \Delta_{k, a}} $ for orthonormal systems of initial data and the kernel relation between the semigroups $e^{-i t \Delta_{k, a}}$ and $e^{i \frac{t}{a}\|x\|^{2-a} \Delta_{k}}$, we prove Strichartz estimates for orthonormal systems of initial data associated with  the Dunkl operator $\Delta_k $ on $\mathbb{R}^n$. Finally, we present some applications to our aforementioned results.


报告人简介: 宋曼利, 西北工业大学数学与统计学院副教授,硕导。2009年本科毕业于南开大学,2014年博士毕业于北京大学,2012-2014年德国基尔大学联合培养。曾主持参加多项国家自然科学基金项目。主要从事调和分析及其在偏微分方程中应用的研究,已在CPAA,ANA,PJM,JIAAAA等国际知名数学期刊上发表SCI论文多篇。曾应邀访问智利圣玛利亚理工大学、北京大学等。


邀请人:张安

欢迎大家参加!

快速链接

版权所有 © 2021  北京航空航天大学 皇冠线上官网
地址:北京市昌平区高教园南三街9号   电话:61716719

Baidu
sogou